1) Average Accoloration & Instertanous acceleration Average Accoleration: | age = U2-U1 Instentenous Acceleration: => \(\vec{a} = \vec{d\vec{c}}{1+} \) \$\$ Motions ith Constant Acceleration $V = \frac{dn}{dr}$ $V = \frac{dx}{dt} - 0$ $0 = \frac{dx}{dt}$ (1) $a = \frac{du}{dt} \Rightarrow du = adt$ $du = \int a dt$ $\int du = a \int dt$ $t \Rightarrow V-U = at$ V = U+atV = u + at $\int_{0}^{1} x = u + at$ $\int_{0}^{1} x = u + at$ $\int_{0}^{1} x = u + at$ $\int_{0}^{1} (x)^{3} = u + at$ (9) $V^{2} = u^{2} + a^{2}t^{2} + 2uqt$ $V^{2} = u^{2} + a^{2}t^{2} + 2uqt$ $V^{2} = u^{2} + a^{2}q(ut + tqt^{2})$ $V^{2} = u^{2} + 2ax$

Hewfor's lows of Motion Friday, February 12, 2021 6:28 PM (1) First low; — If the (vector) sum of all the forces acting on a particle is zero then and only them the particle remains Unaccelerated (i.e., revain at rest or moves with a Constant velocity.

Interial frame: Acceleration free = 0 Ro=6400km 1500

 $\Rightarrow a_{c} = 0.034 \text{m/sec2}$ g = 9.8 m/sec2 $\Rightarrow 9.8 \text{m/sec2}$

 $\omega = \frac{2\pi}{T}$ $T = 24 \times 3600 \text{ Signature}$ $\omega = \frac{2\pi}{24 \times 3600}$ $|Q_{c} = |0.03 + |Sec^{2}|$

It is showing that gravity is almost 288 times stronge than ac

an safely & as a interial frame

Trame moving with Constant Velocity Wort to intend frame

Theretal frame

Theretal frame

Theretal frame

Theretal frame

Frame S

Frame S'

Frame S'

Frame moving with velocity V (Constant) wirt inertial frame then this frame will also be a intertal fram Socond (or :-) The acceleration of a particle as measured from an inertial frame is given by the vector sum of a 11 the forces acting on the particle divided by its mass.

 $m_1a_1 = m_2a_2$ $m_1 = 1$ $m_2 = 1$ $m_1 = 1$ $m_2 = 1$ $m_2 = 1$ $m_2 = 1$ $m_2 = 1$ $m_1 \Rightarrow a_1$ $m_2 \Rightarrow a_2$ $m_2 = 1$ $m_2 \Rightarrow a_2$ $m_3 \Rightarrow a_4$ $m_4 \Rightarrow a_2$ $m_2 \Rightarrow a_2$ $m_2 \Rightarrow a_3$ $m_3 \Rightarrow a_4$ $m_4 \Rightarrow a_2$ $m_2 \Rightarrow a_3$ $m_3 \Rightarrow a_4$ $m_4 \Rightarrow a_2$ $m_2 \Rightarrow a_3$ $m_3 \Rightarrow a_4$ $m_4 \Rightarrow a_2$ $m_2 \Rightarrow a_3$ $m_3 \Rightarrow a_4$ $m_4 \Rightarrow a_2$ $m_2 \Rightarrow a_3$ $m_3 \Rightarrow a_4$ $m_4 \Rightarrow a_4$ $m_2 \Rightarrow a_3$ $m_3 \Rightarrow a_4$ $m_4 \Rightarrow a_4$

(3) 3rd bout Motion: